
© 2004 by Carnegie Mellon University page 1

Achieving Product Qualities
Through Software Architecture

Practices

Linda Northrop
Director, Product Line Systems

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

This work is sponsored by the U.S. Department of Defense.

Presentation for

CSEE&T 2004

Mar 3, 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
03 MAR 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Achieving Product Qualities Through Software Architecture Practices

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
17th Conference on Software Engineering Education and Training (CSEE&T 2004) Norfolk, VA, March
1-3, 2004.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

87

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© 2004 by Carnegie Mellon University page 2

Presentation Outline
Background

Software Architecture

Quality Attributes

Software Architecture Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2004 by Carnegie Mellon University page 3

Applied R&D laboratory situated as a
college-level unit at Carnegie Mellon
University, Pittsburgh, PA, USA

Established in 1984

Technical staff of 335

Offices in Pittsburgh, Pennsylvania (USA),
Arlington, Virginia (USA) and
Frankfurt Germany

Purpose: Help others improve
their software engineering
practices

Software Engineering Institute

© 2004 by Carnegie Mellon University page 4

SEI’s Strategic Functions

TRANSITION

DIRECT
SUPPORT

IDENTIFY
AND MATURE
TECHNOLOGY

AMPLIFY

APPLY

CREATE

DoD needs

Technology
trends

User’s experience

SEI’s
experience

© 2004 by Carnegie Mellon University page 5

SEI and the Community

CREATE APPLY AMPLIFY CREATE APPLY

AMPLIFY CREATE APPLY AMPLIFY CREATE

APPLY AMPLIFY CREATE APPLY AMPLIFY

CREATE APPLY AMPLIFY CREATE APPLY

AMPLIFY CREATE APPLY AMPLIFY CREATE

APPLY AMPLIFY CREATE APPLY AMPLIFY

CREATE APPLY AMPLIFY CREATEAPPLY

DEVELOPERS

ACQUIRERS

RESEARCHERS

© 2004 by Carnegie Mellon University page 6

Product Line Systems Program
Our Goal: To enable widespread product line
practice through architecture-centric
development

© 2004 by Carnegie Mellon University page 7

Our Strategy

Software Architecture
(Software Architecture Technology

Initiative)

Software Product Lines
(Product Line Practice Initiative)

Component Technology
(Predictable Assembly from Certifiable
Components Initiative)

© 2004 by Carnegie Mellon University page 8

Business Success Requires
Software Prowess

Software pervades every sector.
Software has become the bottom line for
many organizations who never envisioned
themselves in the software business.

© 2004 by Carnegie Mellon University page 9

Business Goals
High quality

Quick time to market

Effective use of limited resources

Product alignment

Low cost production

Low cost maintenance

Mass customization

Mind share

 improved
 efficiency

 and
 productivity

© 2004 by Carnegie Mellon University page 10

Substantial

Quick

Sustainable

PROFIT

The Ultimate Universal Goal

© 2004 by Carnegie Mellon University page 11

Software Strategies Are Needed

Business GoalsBusiness Goals

Process
Improvement

Improved
Architecture

Practices

process
quality

product
quality

System
(Software)
Strategies

© 2004 by Carnegie Mellon University page 12

Presentation Outline
Background

Software Architecture

Quality Attributes

Software Architecture Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2004 by Carnegie Mellon University page 13

Software Architecture: Common Ideas
A software architecture is a “first-cut” at designing the
system and solving the problem or fitting the need.

A software architecture is an ad hoc box-and-line
drawing of the system that is intended to solve the
problems articulated by the specification.
• Boxes define the elements or “parts” of the system.
• Lines define the interactions or between the parts.

© 2004 by Carnegie Mellon University page 14

Our Definition of Software
Architecture
“The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software
elements, the externally visible properties of
those elements, and the relationships among
them.”

Bass L.; Clements P.; Kazman R. Software Architecture in Practice
2nd Edition Reading, MA: Addison-Wesley, 2003.

© 2004 by Carnegie Mellon University page 15

Implications of Our Definition
Architecture is an abstraction of a system.

Systems can and do have many structures.

Every system has an architecture.

Just having an architecture is different from having an
architecture that is known to everyone.

If you don’t explicitly develop an architecture, you will get
one anyway – and you might not like what you get!

© 2004 by Carnegie Mellon University page 16

Why is Software Architecture Important?

Represents earliest design decisions

• hardest to change
• most critical to get right
• communication vehicle among

stakeholders

First design artifact addressing
• performance
• reliability

• modifiability
• security

Key to systematic reuse • transferable, reusable abstraction

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

© 2004 by Carnegie Mellon University page 17

Presentation Outline
Background

Software Architecture

Quality Attributes

Software Architecture Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2004 by Carnegie Mellon University page 18

Requirements Beget Design

Requirements
in various
forms

Available
knowledge

Designer Architecture

System

© 2004 by Carnegie Mellon University page 19

Software System Development

Functional
Software

Requirements

If function were all
that mattered, any
monolithic software
would do, ..but
other things
matter…

• Modifiability
• Interoperability
• Availability
• Security
• Predictability
• Portability

:

The important quality attributes and their characterizations are key.

has these qualities

Quality
Attribute
Drivers

Software
Architecture Software

analysis, design, development

© 2004 by Carnegie Mellon University page 20

System Qualities and Software
Architecture

System
Specification

System Quality
Attributes*

Software
Architecture

drive

drives
* Performance

Security
Interoperability
Reliability
Availability
etc.

System Capabilities
and

Software Quality

S
Y
S
T
E
M

determines level of quality

© 2004 by Carnegie Mellon University page 21

Architecture and Functionality

Functionality is largely orthogonal to quality attribute
requirements.
• Functionality is the ability of a system to do the work it

was intended to do.
• Systems are decomposed into elements to achieve a

variety of purposes other than function.
- Architectural choices promote certain qualities as well

as implement the desired functionality.

© 2004 by Carnegie Mellon University page 22

The degree to which a system meets it’s quality attribute
requirements is dependent on architectural decisions.
• A change in structure improving one quality often affects

the other qualities.
• Architecture is critical to the realization of quality

attributes.
• These product qualities should be designed into the

architecture.
• Architecture can only permit, not guarantee, any quality

attribute.

Effects of Architectural Decisions
on Quality Attributes

© 2004 by Carnegie Mellon University page 23

Challenges
What precisely do these quality attributes such as
modifiability, security, performance, and reliability mean?

How do you architect to ensure the system will have its
desired qualities?

Can a system be analyzed to determine these desired
qualities?

How soon can such an analysis occur?

How do you know if software architecture for a system is
suitable without having to build the system first?

© 2004 by Carnegie Mellon University page 24

Quality Attribute Scenarios – 1

A solution to the problem of describing quality attributes
is to use quality attribute scenarios as a means to better
characterize quality attributes.

A quality attribute scenario consists of six parts.

© 2004 by Carnegie Mellon University page 25

Quality Attribute Scenarios – 2

1. stimulus – a condition that affects the system
2. response – the activity that results because of the

stimulus
3. source of the stimulus – the entity that generated the

stimulus
4. environment – the condition under which the stimulus

occurred
5. artifact stimulated – the artifact that was stimulated by

the stimulus
6. response measure – the measure by which the

system’s response will be evaluated

© 2004 by Carnegie Mellon University page 26

Parts of a Quality Attribute
Scenario

1
2
3

4

Artifact: Response

Response
MeasureEnvironment

Stimulus

Source

Process, Storage,
Processor,
Communication

© 2004 by Carnegie Mellon University page 27

General and Concrete Scenarios
General scenarios
• are those scenarios that are system independent
• represent quality attribute characterizations
• can be used to create concrete scenarios that are specific

to a particular system.
General six-part scenarios exist for
• availability
• modifiability
• performance
• security
• testability
• usability

© 2004 by Carnegie Mellon University page 28

Modifiability – 1
Definition: Modifiability is about the cost of change and
refers to the ease with which a software system can
accommodate changes.
Areas of concern include
• identifying what can change

- functions, platforms, hardware, operating systems,
middleware, systems it must operate with, protocols,
and so forth

- quality attributes: performance, reliability, future
modifiability, and so forth

• When will the change be made and who will make it?

© 2004 by Carnegie Mellon University page 29

Modifiability – 2
General scenario considerations:

Source

Stimulus

Environment

Artifacts

End user, developer, system administrator

Add/delete/modify functionality or quality
attribute
Runtime, compile time, build time, design
time
System: user interface, platform,
environment, system that interoperates
with target system

© 2004 by Carnegie Mellon University page 30

Modifiability – 3
General scenario considerations (continued):

Response •Locate places in the architecture to be
modified.

•Make modifications without affecting other
functionality.

•Test the modification with minimal effort.
•Deploy the modification with minimal effort.

Response
Measure

•Cost in terms of the number of affected
components, effort, and money

•Extent to which this modification affects other
functions and/or quality attributes

© 2004 by Carnegie Mellon University page 31

Sample Modifiability Scenario
A developer wishes to change the user interface (UI) code
at design time. The modification is made with no side
effects, in three hours.

Source

Stimulus

Environment

Response
Measure

Artifact

Developer

Wishes to change the UI

Code

At design time

In three hours

Response Modification is made with no side effects

© 2004 by Carnegie Mellon University page 32

The Reality About Software
Architecture.

Quality attribute requirements are the primary drivers for
architectural design.

The degree to which a system meets its quality attribute
requirements is dependent on architectural decisions.

Software development needs to be driven by architectural
decisions.

Architecture-centric development is key.

© 2004 by Carnegie Mellon University page 33

What is architecture-centric
development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2004 by Carnegie Mellon University page 34

Influence of System Stakeholders - 1

Stakeholders have an interest in the construction of a
software system. Stakeholders might include
• customers
• users
• developers
• project managers
• marketers
• maintainers

Stakeholders have different concerns that they wish to
guarantee and/or optimize.

© 2004 by Carnegie Mellon University page 35

Influence of System Stakeholders – 2

Marketing
stakeholder

Behavior,
performance,

security,
reliability,
usability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability!Neat features,
short time to market,
low cost, parity with
competing products!

Architect

Development
organization’s
management
stakeholder

End user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

How can I make
sure the system

has all that?

© 2004 by Carnegie Mellon University page 36

Stakeholder Involvement
The organizational goals and the system properties required
by the business are rarely understood, let alone fully
articulated.

Customer quality attribute requirements are seldom
documented, which results in

• goals not being achieved
• inevitable conflict between different stakeholders

Architects must identify and actively engage stakeholders in
order to

• understand real constraints of the system
• manage the stakeholders’ expectations
• negotiate the system’s priorities
• make tradeoffs

© 2004 by Carnegie Mellon University page 37

Presentation Outline
Background

Software Architecture

Quality Attributes

Software Architecture Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2004 by Carnegie Mellon University page 38

SEI Work in Software Architecture:
Maturing Sound Architecture Practices
Starting Points

Quality attribute/
performance
engineering
Software Architecture
Analysis Method
(SAAM)
Security analysis
Reliability analysis
Software Architecture
Evaluation Best
Practices Report
Software architecture
evaluations

Create
Technology

Attribute-specific
patterns
Architecture expert

Life Cycle Practices
• Architectural

requirements
elicitation

• Architecture
definition

• Architecture
representation

• Architecture
evaluation

• Architecture
reconstruction

© 2004 by Carnegie Mellon University page 39

What is architecture-centric
development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2004 by Carnegie Mellon University page 40

Traditional System Development
Operational descriptions

High level functional requirements
Legacy systems

New systems

Specific system architecture
Software architecture

Detailed design
Implementation

a miracle occurs

Quality attributes are rarely
captured in requirements
specifications.
• often vaguely understood
• often weakly articulated

© 2004 by Carnegie Mellon University page 41

Quality Attribute Workshop

The Quality Attribute Workshop (QAW) is a facilitated
method that engages system stakeholders early in the
lifecycle to discover the driving quality attributes of a
software intensive system.

Key points about the QAW are that it is
• system centric
• scenario based
• stakeholder focused
• used before the software architecture has been created

© 2004 by Carnegie Mellon University page 42

Quality Attribute Workshop Steps
1. Introductions and QAW Presentation

2. Business/Mission Presentation

3. Architecture Plan Presentation

4. Identify Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement
Iterate as necessary with broader
stakeholder community

© 2004 by Carnegie Mellon University page 43

QAW Benefits and Next Steps

• Increased stakeholder communication
• Clarified quality attribute requirements
• Informed basis for architectural decisions

QAW
Quality
Attribute
Scenarios:
• raw
• prioritized
• refined

Architecture
Evaluation

Update Architectural Vision
Refine Requirements
Create Prototypes
Exercise Simulations
Create ArchitectureCan be

used to

Potential Next Steps

Potential Benefits

© 2004 by Carnegie Mellon University page 44

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2004 by Carnegie Mellon University page 45

Creating the Software Architecture

There are architecture definition methods and guidelines,
many of which focus exclusively on the functional
requirements.

It is possible to create an architecture based on the quality
architectural drivers.

One way to approach this is to use architectural tactics
and patterns and a method that capitalizes on both.

© 2004 by Carnegie Mellon University page 46

Tactics
The design for a system consists of a collection of design
decisions.
• Some decisions are intended to ensure the achievement

of the functionality of the system.
• Other decisions are intended to help control the quality

attribute responses.
These decisions are called tactics.
• A tactic is a design decision that is influential in the

control of a quality attribute response.
• A collection of tactics is an architectural strategy.

© 2004 by Carnegie Mellon University page 47

Tactics Catalog
Tactics have been defined for the following quality
attributes:
• Performance
• Availability
• Maintainability
• Usability
• Testability
• Security

Others are in the works.

© 2004 by Carnegie Mellon University page 48

Performance Tactics
Summary of performance tactics

© 2004 by Carnegie Mellon University page 49

Attribute-Driven Design
The Attribute-Driven Design (ADD) method, developed at
the SEI, is an approach to defining a software architecture
that bases the decomposition process on the quality
attributes the software must fill.

It follows a recursive decomposition process where, at
each stage in the decomposition, tactics and architectural
patterns are chosen to satisfy a set of quality scenarios.

© 2004 by Carnegie Mellon University page 50

ADD is positioned after
requirements analysis and can
begin when architectural drivers
are known with some confidence.

Evolutionary Delivery Life Cycle
software
concept

preliminary
requirements
analysis

design the
architecture and
system core

develop a
version

Incorporate
feedback

Elicit
feedback

deliver the
version

Deliver
Final

Version

© 2004 by Carnegie Mellon University page 51

ADD Method's Inputs and Outputs
Inputs
• constraints
• functional requirements
• quality attribute requirements

Outputs
• first several levels of module decomposition
• various other views of the system as appropriate
• set of elements for functionality and the interactions

among them

© 2004 by Carnegie Mellon University page 52

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2004 by Carnegie Mellon University page 53

Importance of Architecture
Documentation
Architecture documentation is important if and only if
communication of the architecture is important.
• How can an architecture be used if it cannot be

understood?
• How can it be understood if it cannot be

communicated?
Documenting the architecture is the crowning step to
creating it.
Documentation speaks for the architect, today and 20
years from today.

© 2004 by Carnegie Mellon University page 54

Seven Principles of Sound
Documentation
Certain principles apply to all documentation, not just
documentation for software architectures.

1. Write from the point of view of the reader.
2. Avoid unnecessary repetition.
3. Avoid ambiguity.
4. Use a standard organization.
5. Record rationale.
6. Keep documentation current but not too current.
7. Review documentation for fitness of purpose.

© 2004 by Carnegie Mellon University page 55

Views

Not all system elements, some
of them.

A view binds an element type
and relation type of interest,
and illustrates them.

All information

Some information

A view is a representation of
a set of system elements and
the relations associated with
them.

© 2004 by Carnegie Mellon University page 56

View-Based Documentation
Views give us our basic principle of architecture
documentation:

Documenting a software architecture is a matter of
documenting the relevant views, and then adding
information that applies to more than one view.

++ =

© 2004 by Carnegie Mellon University page 57

Which Views Are Relevant?
Which views are relevant? It depends on
• who the stakeholders are
• how they will use the documentation

Three primary uses for architecture documentation are

1. education - introducing people to the project
2. communication - among stakeholders
3. analysis - assuring quality attributes

© 2004 by Carnegie Mellon University page 58

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2004 by Carnegie Mellon University page 59

Traditional System Development
Operational descriptions

High level functional requirements
Legacy systems

New systems

Specific system architecture
Software architecture

Detailed design
Implementation

a miracle occurs

A Critical leap!

How do you know if the
architecture
is fit for purpose?

another miracle occurs

© 2004 by Carnegie Mellon University page 60

Why Evaluate Architectures?
All design involves tradeoffs.

A software architecture is the earliest life-cycle artifact that
embodies significant design decisions and tradeoffs.

• The earlier that risks are identified, the earlier that
mitigation strategies can be developed potentially avoid
the risks altogether.

• The earlier that defects are found, the less it costs to
remove them.

© 2004 by Carnegie Mellon University page 61

SEI’s Architecture Tradeoff Analysis
MethodSM (ATAM)SM

ATAM is an architecture evaluation method that
• focuses on multiple quality attributes

• illuminates points in the architecture where quality
attribute tradeoffs occur

• generates a context for ongoing quantitative analysis

• utilizes an architecture’s vested stakeholders as
authorities on the quality attribute goals

© 2004 by Carnegie Mellon University page 62

The ATAMSM

The SEI has developed the Architecture
Tradeoff Analysis MethodSM (ATAMSM).

The purpose of ATAM is: to assess the
consequences of architectural decisions in light
of quality attribute requirements and business
goals.

© 2004 by Carnegie Mellon University page 63

Purpose of ATAM – 1
The ATAM is a method that helps stakeholders
ask the right questions to discover potentially
problematic architectural decisions

Discovered risks can then be made the focus of
mitigation activities: e.g. further design, further
analysis, prototyping.

Surfaced tradeoffs can be explicitly identified and
documented.

© 2004 by Carnegie Mellon University page 64

Purpose of ATAM – 2
The purpose of the ATAM is NOT to provide
precise analyses . . . the purpose IS to discover
risks created by architectural decisions.

We want to find trends: correlation between
architectural decisions and predictions of
system properties.

© 2004 by Carnegie Mellon University page 65

ATAM evaluations are conducted in four phases.

ATAM Phases

Phase 0:
Partnership

and
Preparation

Phase 1:
Initial

Evaluation

Phase 2:
Complete
Evaluation

Phase 3:
Follow-up

Duration: varies
Meeting: primarily
phone, email

Duration: 1.5 - 2 days each for
Phase 1 and Phase 2
Meeting: typically conducted
at customer site

Duration: varies
Meeting: primarily
phone, email

© 2004 by Carnegie Mellon University page 66

ATAM Steps

1. Present the ATAM
2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

© 2004 by Carnegie Mellon University page 67

Example Utility Tree

Utility

Performance

Modifiability

Availability

Security

Add CORBA middleware
in < 20 person-months
Change web user interface
in < 4 person-weeks
Power outage at site1 requires traffic
redirected to site2 in < 3 seconds.

Restart after disk failure in < 5 minutes

Network failure detected and recovered
in < 1.5 minutes

Reduce storage latency on
customer DB to < 200 ms.

Deliver video in real time

Customer DB authorization works
99.999% of the time

Credit card transactions are secure
99.999% of the time

Data
Latency

Transaction
Throughput

New product
categories
Change
COTS

H/W failure

COTS S/W
failures

Data

Data
confidentiality

integrity

(M,L)

(H,M)

(L,H)

(H,L)

(L,H)

(M,M)

(H,M)

(L,H)

(L,H)

© 2004 by Carnegie Mellon University page 68

QAW
Conceptual Flow of the ATAMSM

Architectural
Decisions

ScenariosQuality
Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

Risk Themes

distilled
into

Analysis

Risks

Sensitivity Points

Tradeoffs

Non-Risks

© 2004 by Carnegie Mellon University page 69

When to Use the ATAM
The ATAM can be used throughout the life cycle when
there is a software architecture to evaluate.
The ATAM can be used

• after an architecture has been specified but there is
little or no code

• to evaluate architectural alternatives
• to evaluate the architecture of an existing system

To perform an ATAM evaluation, there must be a software
architecture to evaluate.

• An ATAM evaluation is inappropriate if the software
architecture of the system has not been created yet.

© 2004 by Carnegie Mellon University page 70

ATAM Benefits
The benefits of performing ATAM evaluations include
• clarified quality attribute requirements
• improved architecture documentation
• documented basis for architectural decisions
• identification of risks early in the life cycle
• increased communication among stakeholders

The result is improved architectures.

© 2004 by Carnegie Mellon University page 71

Architecture Evaluation Experience
Benefits of early architecture evaluations
• Evaluations using the Architecture Tradeoff Analysis

MethodSM (ATAMSM) uncover an average 20 risks per
two-day evaluation. Experience over a wide range of
domains attributes these risks to
• unknowns (requirements, hardware, COTS)
• side effects of architectural decisions
• improper architectural decisions
• interactions with other organizations that provide

system components
• Evaluations performed by AT&T have resulted in 10%

productivity increase per project

© 2004 by Carnegie Mellon University page 72

Presentation Outline
Background

Software Architecture

Quality Attributes

Software Architecture Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2004 by Carnegie Mellon University page 73

SEI Work in Software Architecture:
Maturing Sound Architecture Practices
Starting Points

Quality attribute/
performance
engineering
Software Architecture
Analysis Method
(SAAM)
Security analysis
Reliability analysis
Software Architecture
Evaluation Best
Practices Report
Software architecture
evaluations

Create
Technology

Attribute-specific
patterns
Architecture expert

Life Cycle Practices
• Architectural

requirements
elicitation

• Architecture
definition

• Architecture
representation

• Architecture
evaluation

• Architecture
reconstruction

Apply/Amplify
Architecture

Evaluations
Architecture

Coaching
Architecture
Reconstructions
Books
Courses
Certificate

Programs
Acquisition
Guidelines
Technical Reports
Web site
Workshops

© 2004 by Carnegie Mellon University page 74

SEI Software Architecture Curriculum

Six courses
• Software Architecture: Principles and Practices
• Documenting Software Architectures
• Software Architecture Design and Analysis
• Software Product Lines
• ATAM Evaluator Training
• ATAM Facilitator Training

Three certificate programs
• Software Architecture Professional
• ATAM Evaluator
• ATAM Lead Evaluator

Coming in 2005: SEI Software Product Line Curriculum

© 2004 by Carnegie Mellon University page 75

About the Curriculum
Software professionals can take individual courses
based on specific needs or interests
or complete one or more of the following three
specially designed certificate programs:

• Software Architecture Professional
• ATAMSM Evaluator
• ATAMSM Lead Evaluator

The ATAM certificate programs qualify individuals to
perform or lead SEI-authorized ATAM evaluations.

© 2004 by Carnegie Mellon University page 76

Certificate Program Course Matrix

ATAM Lead Evaluator: 5 Courses & Coaching
Software
Architecture
Professional:
4 Courses

Software
Architecture:
Principles and
Practices

Documenting
Software
Architectures

Software
Architecture
Design and
Analysis

Software
Product
Lines

ATAM
Evaluator
Training

ATAM
Facilitator
Training

ATAM
Coaching

ATAM
Evaluator
2 courses

© 2004 by Carnegie Mellon University page 77

About all the Courses
All of the courses are two-day learning experiences
that involve lectures and exercises.

The materials provided include books and class
lecture slides.

Prerequisites are enforced.

Any of the courses can also be scheduled for on site
delivery.

© 2004 by Carnegie Mellon University page 78

Associated Texts

Documenting Software
Architectures: Views
and Beyond

Software Architecture in
Practice, 2nd Edition

Evaluating Software
Architectures: Methods
and Case Studies

Software Product Lines:
Practices and Patterns

© 2004 by Carnegie Mellon University page 79

SEI Software Architecture Workshop
for Educators
August 16-18, 2004
Pittsburgh, PA

The Software Architecture Workshop for Educators is
a three-day forum for sharing SEI software
architecture technology with educators and for jointly
determining ways to incorporate these concepts and
methods into academic courses.

Schedule: Aug 16-17: Software Architecture: Principles
and Practices Course

Aug 18: Facilitated Discussion

© 2004 by Carnegie Mellon University page 80

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2004 by Carnegie Mellon University page 81

Architecture Principles
Software architecture is important because it
• provides a communication vehicle among stakeholders
• is the result of the earliest design decisions
• is a transferable, reusable abstraction of a system

The degree to which a system meets its quality attribute
requirements is dependent on architectural decisions.

Every software-intensive system has a software architecture.
Just having an architecture is different from having an
architecture that is known to everyone, much less one that is fit
for the system’s intended purpose.

An architecture-centric approach is critical to achieving and
implementing an appropriate architecture.

© 2004 by Carnegie Mellon University page 82

SEI Unique Contribution

The SEI work in software architecture technology and
its associated methods are notably unique in their

• explicit focus on quality attributes
• direct linkage to business and mission goals
• explicit involvement of system stakeholders
• high-quality published materials for practitioner

consumption
• grounding in state-of-the-art quality attribute

models and reasoning frameworks

© 2004 by Carnegie Mellon University page 83

The Total Picture

Business/Mission GoalsBusiness/Mission Goals

Process
Improvement

Improved
Architecture

Practices

Software
Product Linesprocess

quality

product
quality

process and
product quality

System
(Software)
Strategies

Improved
Component
Practices

© 2004 by Carnegie Mellon University page 84

The Total Picture

Business/Mission GoalsBusiness/Mission Goals

Process
Improvement

Improved
Architecture

Practices

Software
Product Linesprocess

quality

product
quality

process and
product quality

System
(Software)
Strategies

Improved
Component
Practices

© 2004 by Carnegie Mellon University page 85

Conclusion
Software architecture is critical to achieving key
product qualities.

Software architecture, product line practices, and
predictable component practices hold great potential
for achieving business and mission goals in the
development of software-intensive systems.

© 2004 by Carnegie Mellon University page 86

Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. mail:
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/ata
http://www.sei.cmu.edu/plp

SEI Fax: 412-268-5758

Contact Information

© 2004 by Carnegie Mellon University page 87

Presentation Outline
Background

Software Architecture

Quality Attributes

Software Architecture Practices

SEI Software Architecture Support

Conclusion

Discussion

